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Recap

• Definitions of sample space Ω, events, random variables, expectation, conditional 
probability, conditional expectation.

• Going back and forth between events and R.V.s with indicator R.V.s

• Linearity of expectation, examples.

• Independence of events and R.V.s.  Mutual independence vs pairwise independence.

• Properties of independence: E[XY]=E[X]E[Y] if independent.

• Application: universal hashing.

• Bernoulli R.V.s, Binomial R.V.s, Geometric R.V.s.



The Probabilistic Method

An approach to showing something exists by defining a probability space and showing 
it has non-zero probability of occurring.

Example: A graph with 𝑚 edges must have a cut (a partitioning of the vertices into two 
sets 𝐴 and 𝐵) such that at least 𝑚/2 edges cross the cut.

Proof: Consider randomly putting each vertex into 𝐴 or 𝐵 independently with prob. ½. 

• Each edge (𝑖, 𝑗) has probability ½ of crossing the cut.  

• So, the expected number of edges that cross is 𝑚/2. 

• So, there must exist a partitioning in which at least 𝑚/2 edges cross.



The Probabilistic Method

An approach to showing something exists by defining a probability space and showing 
it has non-zero probability of occurring.

Example #2: Suppose 𝐹 is a 𝑘-CNF formula with 𝑚 < 2𝑘 clauses, where every clause 
has size exactly 𝑘 (and no variable can be repeated in a clause).  Then 𝐹 must be 
satisfiable.

Proof: Consider a random assignment 𝑥.

• Let 𝐶𝑗 be the indicator R.V for the event that clause 𝑗 is satisfied. 𝔼 𝐶𝑗 = 1 − 1/2𝑘.

• By linearity of expectation, the expected total number of clauses satisfied is 𝑚൫
൯

1 −
1/2𝑘 > 𝑚 − 1.

• So, there must be at least one assignment that satisfies all 𝑚 clauses.



The Probabilistic Method

An approach to showing something exists by defining a probability space and showing 
it has non-zero probability of occurring.

More generally, for any value of 𝑚, there must exist an assignment that satisfies at 
least ⌈𝑚(1 − 1/2𝑘)⌉ clauses.  E.g., for a 3-CNF, there must exist an assignment that 
satisfies at least a 7/8 fraction of the clauses.

Proof: Consider a random assignment 𝑥.

• Let 𝐶𝑗 be the indicator R.V for the event that clause 𝑗 is satisfied. 𝔼 𝐶𝑗 = 1 − 1/2𝑘.

• By linearity of expectation, the expected total number of clauses satisfied is 𝑚൫
൯

1 −
1/2𝑘 > 𝑚 − 1.

• So, there must be at least one assignment that satisfies all 𝑚 clauses.



The Probabilistic Method

An approach to showing something exists by defining a probability space and showing 
it has non-zero probability of occurring.

More generally, for any value of 𝑚, there must exist an assignment that satisfies at 
least ⌈𝑚(1 − 1/2𝑘)⌉ clauses.  E.g., for a 3-CNF, there must exist an assignment that 
satisfies at least a 7/8 fraction of the clauses.

• This gives an efficient randomized algorithm to find such an assignment, since the R.V. 
“# clauses satisfied” is a non-negative integer and bounded by 𝑚.

• On your homework, you will give an efficient deterministic algorithm.



The Coupon Collector Problem

Imagine we have 𝑛 bins.  At each time step we place a ball into a bin independently at 
random.  How long will it take in expectation until all bins have at least one ball?

• Let 𝑋 denote the time to fill all 𝑛 bins.  Let’s decompose 𝑋 as 𝑋 = σ𝑖 𝑋𝑖 where 𝑋𝑖
denotes the time to fill the 𝑖th new bin.

• Each 𝑋𝑖 is a geometric R.V. with parameter 
𝑛−𝑖+1

𝑛
, so 𝔼 𝑋𝑖 =

𝑛

𝑛−𝑖+1
.

• Therefore, 𝔼 𝑋 =
𝑛

𝑛
+

𝑛

𝑛−1
+

𝑛

𝑛−2
+⋯+

𝑛

1
= 𝑛 ⋅ 𝐻𝑛 = 𝑛 ⋅ ln 𝑛 + Θ 𝑛 .



The DeMillo-Lipton-Schwartz-Zippel lemma

Most problems with randomized polynomial-time algorithms also have known 
deterministic polynomial-time algorithms.  But there are a few hold-outs. 

Here is one: like an algebraic version of the SAT problem.

• Say 𝑝 is an 𝑛-variable polynomial of degree 𝑑, over a field 𝔽 of size ≥ 2𝑑.

• Assume 𝑝 is given in a form that can be evaluated efficiently, e.g., 
𝑥1 − 2𝑥2 + 3 2𝑥1 − 𝑥3 − (3𝑥1 + 2)(𝑥2 + 𝑥3)

• Question: is 𝑝 identically 0?  Or, does there exist 𝑥 ∈ 𝔽𝑛 such that 𝑝 𝑥 ≠ 0?

• Equivalently, given two polynomials 𝑝1, 𝑝2, are they identical (does 𝑝1 𝑥 − 𝑝2 𝑥 =
0 always?



The DeMillo-Lipton-Schwartz-Zippel lemma

So, if 𝔽 ≥ 2𝑑 then we can just pick random inputs and try. See if we get 0 for 𝑘 times 
in a row. If 𝑝 was not identically 0, there would be at most a 1/2𝑘 chance this would 
happen.

Will prove the theorem by induction on the number of variables 𝑛.

Base case: 𝑛 = 1.  This follows from the fact that a degree 𝑑 polynomial in 1 variable 
has at most 𝑑 roots.

What makes the inductive case harder is that a degree 𝑑 polynomial in more than one 
variable could have an infinite number of roots.  E.g., 𝑥1(𝑥2 − 1).



The DeMillo-Lipton-Schwartz-Zippel lemma

General case: Assume true for 𝑛 − 1.  Let 𝑖 be the max degree of 𝑥𝑛.

• Can write 𝑝 as 𝑥𝑛
𝑖 ⋅ 𝑝𝑖 𝑥1, … , 𝑥𝑛−1 + 𝑥𝑛

𝑖−1 ⋅ 𝑝𝑖−1 𝑥1, … , 𝑥𝑛−1 + …

where 𝑝𝑖 is not identically 0, and 𝑝𝑖 has degree ≤ 𝑑 − 𝑖.

• Now, pick 𝑥1, … , 𝑥𝑛−1 independently at random in 𝑆.  The probability we have set 𝑝𝑖
to 0 is at most 𝑑 − 𝑖 /|𝑆| by induction.

• Assuming this does not happen, we have a degree 𝑖 polynomial in one variable 𝑥𝑛.

• Pick 𝑥𝑛 at random, the chance we get 0 is at most 𝑖/|𝑆|.

• Overall, failure probability at most 𝑑 − 𝑖 / 𝑆 + 𝑖/ 𝑆 = 𝑑/|𝑆|.



Perfect matchings in general graphs

You may have seen in an algorithms class how to efficiently find perfect matchings in 
bipartite graphs (e.g., using network flow).

You might not have seen how to do it in general graphs, e.g.,

Here is a simple randomized algorithm.

(Efficient deterministic algorithms exist too, but they’re more complicated)



Perfect matchings in general graphs

First, given graph G, think of it as a directed graph G’ where each undirected edge in G 
is replaced by two directed edges, one in each direction. 

G has a perfect matching iff G’ has a cycle cover (a collection of disjoint cycles that cover 
all vertices) where all cycles have even length.



Perfect matchings in general graphs

First, given graph G, think of it as a directed graph G’ where each undirected edge in G 
is replaced by two directed edges, one in each direction. 

G has a perfect matching iff G’ has a cycle cover (a collection of disjoint cycles that cover 
all vertices) where all cycles have even length.
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Note: a cycle cover is 
equivalent to a 
permutation of the 
vertices that is consistent 
with the edges.



Perfect matchings in general graphs

Now, given G, create “Tutte matrix” M.  For every edge 𝑖, 𝑗 , 𝑖 < 𝑗, put variable 𝑥𝑖𝑗 in 
entry 𝑖𝑗 (above the diagonal) and −𝑥𝑖𝑗 in entry 𝑗𝑖 (below the diagonal).  The rest are 0. 

0 𝑥12 𝑥13 0 𝑥15 0

−𝑥12 0 0 𝑥24 0 𝑥26

−𝑥13 0 0 𝑥34 𝑥35 𝑥36

0 −𝑥24 −𝑥34 0 0 𝑥46

−𝑥15 0 −𝑥35 0 0 𝑥56

0 −𝑥26 0 −𝑥46 −𝑥56 0
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3 4

5 6

Now, consider det(𝑀).  This is a polynomial of 
degree ≤ 𝑛 in at most 𝑛2 variables, and it can be 
efficiently computed on any given assignment.

Claim: this polynomial is identically 0 iff G has no 
perfect matching.

So, can use DLSZ lemma 
to solve the decision 
question, and then do 
an easy self-reduction.



Perfect matchings in general graphs

Now, given G, create “Tutte matrix” M.  For every edge 𝑖, 𝑗 , 𝑖 < 𝑗, put variable 𝑥𝑖𝑗 in 
entry 𝑖𝑗 (above the diagonal) and −𝑥𝑖𝑗 in entry 𝑗𝑖 (below the diagonal).  The rest are 0. 

0 𝑥12 𝑥13 0 𝑥15 0

−𝑥12 0 0 𝑥24 0 𝑥26

−𝑥13 0 0 𝑥34 𝑥35 𝑥36

0 −𝑥24 −𝑥34 0 0 𝑥46

−𝑥15 0 −𝑥35 0 0 𝑥56

0 −𝑥26 0 −𝑥46 −𝑥56 0
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5 6

Claim: det(𝑀) is identically 0 iff G has no perfect matching.

• If we write det(𝑀) as a sum of terms, each term is a 
permutation consistent with the edges, i.e., a cycle cover of G’.

• Two cycle covers of G’ will give ± the same term iff they have 
the same edges of G (possibly used in different directions)

• If you sum over all cycle 
covers giving ± the same 
term, you will get 0 iff it 
includes an odd cycle.



Perfect matchings in general graphs

Now, given G, create “Tutte matrix” M.  For every edge 𝑖, 𝑗 , 𝑖 < 𝑗, put variable 𝑥𝑖𝑗 in 
entry 𝑖𝑗 (above the diagonal) and −𝑥𝑖𝑗 in entry 𝑗𝑖 (below the diagonal).  The rest are 0. 

0 𝑥12 𝑥13 0 𝑥15 0

−𝑥12 0 0 𝑥24 0 𝑥26

−𝑥13 0 0 𝑥34 𝑥35 𝑥36

0 −𝑥24 −𝑥34 0 0 𝑥46

−𝑥15 0 −𝑥35 0 0 𝑥56

0 −𝑥26 0 −𝑥46 −𝑥56 0

1 2

3 4

5 6

Claim: det(𝑀) is identically 0 iff G has no perfect matching.

• This because a cycle of length 𝑘 will have some 𝑗 negative 
entries and 𝑘 − 𝑗 positive entries, and its reverse will have 𝑘 −
𝑗 negative entries and 𝑗 positive entries.  These have opposite 
sign iff 𝑘 is odd.

• If you sum over all cycle 
covers giving ± the same 
term, you will get 0 iff it 
includes an odd cycle.

• Also using fact that sign of 
permutation doesn’t change 
when you reverse a cycle

• Also using assumption that 
2#(𝑐𝑦𝑐𝑙𝑒𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ >2) ≠ 0 in 𝔽.
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